
1© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Software Lifecycles Models

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering
Lecture 17

2© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline of Today’s Lecture

• Modeling the software life cycle
• Sequential models

• Pure waterfall model
• V-model
• Sawtooth model

• Iterative models
• Boehm’s spiral model
• Unified Process

• Entity-oriented models
• Issue-based model

3© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Typical Software Life Cycle Questions

• Which activities should we select for the software project?
• What are the dependencies between activities?
• How should we schedule the activities?
• To find these activities and dependencies we can use the same modeling

techniques we use for software development:
• Functional Modeling of a Software Lifecycle

• Scenarios
• Use case model

• Structural modeling of a Software Lifecycle
• Object identification
• Class diagrams

• Dynamic Modeling of a Software Lifecycle
• Sequence diagrams, statechart and activity diagrams

4© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Definitions

• Software life cycle:
• Set of activities and their relationships to each other to

support the development of a software system

• Software development methodology:
• A collection of techniques for building models applied

across the software life cycle

5© 2006 Bernd Bruegge Software Engineering WS 2006/2007

DeveloperClient Project manager

System developmentProblem definition

<<include>>
<<include>>

<<include>>

Software development

System operation

End userAdministrator

Functional Model of a simple life cycle
model

6© 2006 Bernd Bruegge Software Engineering WS 2006/2007

System
operation
activity

System
development
activity

Problem
definition
activity

Software development goes through a linear progression of states
called software development activities

Activity Diagram for the same Life Cycle
Model

7© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Another simple Life Cycle Model

System Development and Market creation can be done in parallel.
They must be done before the system upgrade activity

System
upgrade
activity

Market
creation
activity

System
development
activity

8© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Two Major Views of the Software Life Cycle

• Activity-oriented view of a software life cycle
• Software development consists of a set of development

activities

• all the examples so far

• Entity-oriented view of a software life cycle
• Software development consists of the creation of a set of

deliverables.

9© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Entity-centered view of Software Development

Lessons learned
document

System specification
document Executable system

Market survey
document

Software Development

Software development consists of the creation of a
set of deliverables

10© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Specification

Executable system

Lessons learned

Market survey

Problem definition

System development

System operation

Activity Work product

consumes

produces

consumes

produces

consumes

produces

activity

activity

activity

document

document

document

Combining Activities and Entities in One
View

11© 2006 Bernd Bruegge Software Engineering WS 2006/2007

IEEE Std 1074: Standard for Software Life
Cycle Activities

IEEE Std 1074

Project
Management

Pre-
Development

Develop-
ment

Post-
Development

Cross-
Development

(Integral Processes)

> Project Initiation
>Project Monitoring
 &Control
> Software Quality
 Management

> Concept
 Exploration
> System
 Allocation

> Requirements
> Design
> Implemen-
 tation

> Installation
> Operation &
 Support
> Maintenance
> Retirement

> V & V
> Configuration
 Management
> Documen-
 tation
> Training

Process Group

Process

12© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Model of the IEEE 1074 Standard

Process Group

Activity Work Product

Resource

Task

Process

Money

Time

Participant

consumed by

produces

Work Unit

*

*

*

*

Software Life Cycle

*

*

13© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Life Cycle Modeling

• Many models have been proposed to deal with
the problems of defining activities and
associating them with each other

• The first model proposed was the waterfall model
[Royce]

• Spiral model [Boehm]
• Objectory process [Jacobsen]
• Rational process [Kruchten]
• Unified process [Jacobsen, Booch, Rumbaugh]

14© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Requirements
Process

System
Allocation
Process

Concept
Exploration
Process

Design
Process

Implementation
Process

Installation
Process

Operation &
Support Process

Verification
& Validation

Process

The Waterfall Model of
the Software Life
Cycle

adapted from [Royce 1970]

15© 2006 Bernd Bruegge Software Engineering WS 2006/2007

DOD Standard 2167A

• Example of a waterfall model with the following
software development activities

• System Requirements Analysis/Design
• Software Requirements Analysis
• Preliminary Design and Detailed Design
• Coding and CSU testing
• CSC Integration and Testing
• CSCI Testing
• System integration and Testing

• Required by the U.S. Department of Defense for
all software contractors in the 1980-90’s.

16© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Activity Diagram of
MIL DOD-STD-2167A

Preliminary
Design Review

Critical Design
Review (CDR)

System
Requirements

Review

System
Design
Review

Software
Specification

Review

System
Requirements
Analysis

Software
Requirements
Analysis

System
Design

…

Preliminary
Design

Detailed
Design

Coding &
CSU Testing

CSC
Integration
& Testing

17© 2006 Bernd Bruegge Software Engineering WS 2006/2007

From the Waterfall Model to the V Model

System Design

Requirements
Analysis

Requirements
Engineering

Object
Design

Integration
Testing

System
Testing

Unit
 Testing

Implemen-
tation

System
Testing

Unit
 Testing

Integration
 Testing

Acceptance

18© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Activity Diagram of the V Model
System

Requirements
Analysis

Implementation

Preliminary
Design

Detailed
Design

Software
Requirements
Elicitation

Operation

Client
Acceptance

Requirements
Analysis

Unit
Test

System
Integration

& Test

Component
Integration

& Test

Problem with the V-Model:
Developers Perception =

 User Perception

precedes
Is validated by

19© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Properties of Waterfall-based Models

• Managers love waterfall models
• Nice milestones
• No need to look back (linear system)
• Always one activity at a time
• Easy to check progress during development: 90%

coded, 20% tested

• However, software development is non-linear
• While a design is being developed, problems with

requirements are identified
• While a program is being coded, design and

requirement problems are found
• While a program is tested, coding errors, design errors

and requirement errors are found.

20© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Escher was the first:-)

 The Alternative: Allow Iteration

21© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Construction of Escher’s Waterfall Model

http://www.cs.technion.ac.il/~gershon/EscherForReal/

22© 2006 Bernd Bruegge Software Engineering WS 2006/2007

• The spiral model focuses on addressing risks
incrementally, in order of priority.

• It consists of the following set of activities
• Determine objectives and constraints
• Evaluate alternatives
• Identify risks
• Resolve risks by assigning priorities to risks
• Develop a series of prototypes for the identified risks

starting with the highest risk
• Use a waterfall model for each prototype development
• If a risk has successfully been resolved, evaluate the results

of the round and plan the next round
• If a certain risk cannot be resolved, terminate the project

immediately

• This set of activities is applied to a couple of so-
called rounds.

Spiral Model

23© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Rounds in Boehm’s Spiral Model

• Concept of Operations
• Software

Requirements
• Software Product

Design
• Detailed Design
• Code
• Unit Test
• Integration and Test
• Acceptance Test
• Implementation

• For each round go
through these activities:

• Define objectives,
alternatives,
constraints

• Evaluate alternatives,
identify and resolve
risks

• Develop and verify a
prototype

• Plan the next round.

Disccourse on Prototyping

24© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Diagram of Boehm’s Spiral Model

25© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Round 1, Concept of Operations:
Determine Objectives,Alternatives & Constraints

Project
Start

26© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Round 1, Concept of Operations:
Evaluate Alternatives, identify & resolve Risks

Risk Analysis

27© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Round 1, Concept of Operations:
Develop and Verify

Concept of Operation
Activity

28© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Round 1, Concept of Operations:
Prepare for Next Activity

Requirements and
Life cycle Planning

29© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Round 2, Software Requirements:
Determine Objectives,Alternatives & Constraints

Start
of Round 2

30© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Comparison of Projects
Determine objectives,
alternatives, & constraints

Evaluate alternatives,
identify & resolve risks

Develop & verify
next level productPlan next phase

Requirements

Development

Integration

plan

plan

plan

Requirements

Design

validation

validation

Software
System

Product

Risk
analysis

Risk
analysis

Prototype1

Prototype2

Prototype3

Risk
analysis

Concept of
operation

Requirements

Design

Code

Unit Test

Integration & Test

Acceptance

Detailed
Design

P1

P2

Test

Project P1

Project P2

31© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline of Today’s Lecture

Modeling the software life cycle
Sequential models

Pure waterfall model
V-model
Sawtooth model

 Iterative models
Boehm’s spiral model
• Unified Process

• Entity-oriented models
• Issue-based model

32© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Unified Process

• The Unified Process is another iterative process
model

• States of a software system developed with the
Unified Process

• Inception, Elaboration, Construction, Transition

• Artifacts Sets
• Management Set, Engineering Set

• Workflows
• Management, Environment, Requirements, Design,

Implementation, Assessment, Deployment

• Iterations are managed as software projects
• Project participants are called stakeholders.

33© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The Unified Process

• The Unified Process supports the following
• Evolution of project plans, requirements and software

architecture with well-defined synchronization points
• Risk management
• Evolution of system capabilities through demonstrations

of increasing functionality

• Big emphasis on the difference between
engineering and production

• This difference is modeled by introducing two
major stages:

• Engineering stage
• Production stage.

34© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Difference: Engineering vs. Production

• Engineering Stage:
• Focuses on analysis and design activities, driven by

unpredictable teams

• Production Stage:
• Focuses on construction, test and deployment, driven by

more predictable but larger teams

Focus Factor
Risk

Activities

Artifacts

Quality Assessment

Engineering Stage
Schedule, technical feasibility

Planning, Analysis, Design

Requirement Analysis and
System Design Documents
Demonstration, Inspection

Production Stage
Cost

Implementation, Integration

Baselines, Releases

Testing

Phases in the Unified Process

The 2 major stages decomposed into 4 phases
 Engineering stage

1. Inception phase
2. Elaboration phase

ElaborationInception

ConstructionTransition

Transition from
 engineering to
production stage

 Production phase
3. Construction phase
4. Transition phase

The phases describe states of the software system to be developed.

36© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Inception Phase: Objectives

• Establish the project’s scope
• Define acceptance criteria
• Identify the critical use cases and scenarios
• Demonstrate at least one candidate software

architecture
• Estimate the cost and schedule for the project
• Define and estimate potential risks

37© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Elaboration Phase: Objectives

At the end of this phase, the “engineering” of the
system is complete

A decision must be made:
• Commit to production phase?
• Move to an operation with higher cost risk and inertia

(i.e. bureaucracy)

Main questions:
• Are the system models and project plans stable

enough?
• Have the risks been dealt with?
• Can we predict cost and schedule for the completion of

the development for an acceptable range?

38© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Construction Phase: Objectives

• Minimize development costs by optimizing
resources

• Avoid unnecessary restarts (modeling, coding)

• Achieve adequate quality as fast as possible
• Achieve useful version

• Alpha, beta, and other test releases

39© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Transition Phase

• The transition phase is entered
• when a baseline is mature enough that it can be

deployed to the user community

• For some projects the transition phase is
• the starting point for the next version

• For other projects the transition phase is
• a complete delivery to a third party responsible for

operation, maintenance and enhancement of the
software system.

40© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Transition Phase: Objectives

• Achieve independence of users
• Produce a deployment version is complete and

consistent
• Build a release as rapidly and cost-effectively as

possible.

41© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Iteration in the Unified Process

• Each of the four phases introduced so far
(inception, elaboration, construction, transition)
consists of one or more iterations

• An iteration represents a set of activities for
which

• have a milestone (“a well-defined intermediate event”)
• the scope and results are captured with work-products

called artifacts.

42© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Artifact Sets

• Artifact set
• A set of work products that are persistent and in a

uniform representation format (natural language, Java,
UML,…)

• Every element in the set is developed and reviewed as a
single entity

• The Unified Process distinguishes five artifact
sets:

• Management set
• Requirements set
• Design set
• Implementation set
• Deployment set

Also called Engineering set.

Artifact Sets in the Unified Process

Requirements
Set

1. Vision
document
(“problem
statement”)

2. Requirements
model(s)

Design Set

1. Design
 model(s)
2. Test model

3. Software
 architecture

Implementation
Set

1. Source code
 baselines
2. Compile-time
 files
3. Component
 executables

Deployment
Set

1. Integrated pro-
 duct executable
2. Run-time files

3. User
 documentation

Management Set

Planning Artifacts
1. Work breakdown structure
2. Business Case
3. Release specifications
4. Software Project
Management Plan

Operational Artifacts
1. Release descriptions
2. Status assessments
3. Software change order
database
4. Deployment documents
5. Environment

44© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Focus on Artifact Sets during Development

• Each artifact set is the predominant focus in one
stage of the unified process

Inception Elaboration Construction Transition
Management

Set

Requirements
 Set

Design Set

Implementation
Set

Deployment
Set

45© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Management of Artifact Sets

• Some artifacts are changed only after a phase
• Other artifacts are updated after each minor

milestone, i.e. after an iteration
• The project manager is responsible

• to manage and visualize the sequence of artifacts
across the software lifecycle activities

• This visualization is often called artifact roadmap.

46© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Artifact Set Roadmap: Focus on
Models

Inception Elaboration Construction Transition
Management Set

Requirements Set

Design Set

Deployment Set

1. Vision
2. WBS
3. Schedule
4. Conf. Management
5. Project Agreement
6. Test cases

1. Analysis Model

1. System Design
2. Interface Specification

Implementation Set

1. Source code
2. Test cases

1. Alpha-Test
2. Beta-Test

Informal
Baseline

47© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Artifact Set Roadmap: Focus on
Documents

Inception Elaboration Construction Transition
Management Set

Requirements Set

Design Set

Deployment Set

1. Problem Statement
2. WBS
3. SPMP
4. SCMP
5. Project Agreement
6. Test plan

1. RAD

1. SDD
2. ODD

Implementation Set

1. Source code
2. Test cases

1. User Manual
2. Administrator Manual

Informal
Baseline

48© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Models vs. Documents

• Documentation-driven approach
• The production of the documents drives the milestones

and deadlines

• Model-driven approach
• The production of the models drive the milestones

deadlines

• Main goal of a modern software development
project

• Creation of models and construction of the software
system

• The purpose of documentation is to support this goal.

49© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Reasons for Documentation-Driven Approach

• No rigorous engineering methods and languages
available for analysis and design models

• Language for implementation and deployment is
too cryptic

• Software project progress needs to be assessed
• Documents represent a mechanism for demonstrating

progress

• People want to review information
• but do not understand the language of the artifact

• People wanted to review information,
• but do not have access to the tools to view the

information.

50© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Artifact-Driven Approach

• Provides templates for documents at the start of
the project

• Instantiates documents automatically from
these templates

• Enriches them with modeling and artifact information
generated during the project

• Tools automatically generate documents from
the models. Examples:

• Schedule generator
• Automatic requirements document generator
• Automatic interface specification generator
• Automatic analysis and design documents generator
• Automatic test case generator.

51© 2006 Bernd Bruegge Software Engineering WS 2006/2007

“Process” is an overloaded term

• The Unified Process distinguishes between macro
and micro process:

• The macro process models the software lifecycle
• The micro process models activities that produce artifacts

• Another meaning for process:
• Business process

• The policies, procedures and practices in an
organization pursuing a software-intensive line of
business.

• Focus: Organizational improvement, long-term
strategies, and return on investment (ROI)

• The micro processes are called workflows in the
Unified Process.

52© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Workflows in the Unified Process (1)

• Management workflow
• Planning the project (Problem statement, SPMP, SCMP,

Test plan)

• Environment workflow
• Automation of process and maintenance environment.

Setup of infrastructure (Communication, Configuration
management, ...).

• Requirements workflow
• Analysis of application domain and creation of

requirements artifacts (analysis model).

• Design workflow
• Creation of solution and design artifacts (system

design model, object design model).

53© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Workflows in the Unified Process (2)

• Implementation workflow
• Implementation of solution, source code testing,

maintenance of implementation and deployment
artifacts (source code).

• Assessment workflow
• Assess process and products (reviews, walkthroughs,

inspections, testing…)

• Deployment workflow
• Transition the software system to the end user

54© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Workflows work across Phases

• Workflows create artifacts (documents, models)
• Workflows consist of one or more iterations per phase

Inception Elaboration Construction Transition

Design Workflow

Implementation
Workflow

Assessment
Workflow

Deployment
Workflow

Management
Workflow

Requirements
 Workflow

Environment
Workflow

55© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Limitations of Waterfall and iterative
Models

• Neither of these models deal well with frequent
change

• The Waterfall model assumes that once you are done
with a phase, all issues covered in that phase are
closed and cannot be reopened

• The Spiral and Unified Process model can deal with
change between phases, but do not allow change
within a phase

• What do you do if change is happening more
frequently?

• “The only constant is the change”

56© 2006 Bernd Bruegge Software Engineering WS 2006/2007

An Alternative: Issue-Based Development

• A system is described as a collection of issues
• Issues are either closed or open
• Closed issues have a resolution
• Closed issues can be reopened (Iteration!)

• The set of closed issues is the basis of the system
model

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Open

SD.I1:Closed

SD.I2:Closed

SD.I3:Closed

Planning Requirements Analysis System Design

57© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Waterfall Model: Analysis Phase

I1:Open

I2:Open I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:OpenAnalysisAnalysis

58© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Waterfall Model: Design Phase

I1:Closed

I2:Closed I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:OpenAnalysis

Design

Analysis

59© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Waterfall Model: Implementation Phase

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

Implementation

Design

Analysis

60© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Waterfall Model: Project is Done

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

Implementation

Design

Analysis

61© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Issue-Based Model: Analysis Phase

I1:Open

I2:Open I3:Open

D.I1:Open

Imp.I1:Open

Analysis:80%

Design: 10%

Implemen-
tation: 10%

62© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Issue-Based Model: Design Phase

I1:Closed

I2:Closed I3:Open

SD.I1:Open

SD.I2:Open

Imp.I1:Open

Imp.I2:Open

Imp.I3:OpenAnalysis:40%

Design: 60%

Implemen-
tation: 0%

63© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Issue-Based Model: Implementation Phase

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Closed

SD.I1:Open

SD.I2:Closed

SD.I3:OpenAnalysis:10%

Design: 10%

Implemen-
tation: 60%

64© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Issue-Based Model: Prototype is Done

I1:Closed

I2:Closed I3: Pending

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2: Unresolved

SD.I3:Closed

65© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Frequency of Change and Choice of
Software Lifecycle Model

PT = Project Time, MTBC = Mean Time Between Change

• Change rarely occurs (MTBC » PT)

• Waterfall Model

• Open issues are closed before moving to next phase

• Change occurs sometimes (MTBC ≈ PT)

• Boehm’s Spiral Model, Unified Process

• Change occurring during phase may lead to iteration
of a previous phase or cancellation of the project

• Change is frequent (MTBC « PT)

• Issue-based Development (Concurrent Development)

• Phases are never finished, they all run in parallel.

66© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Summary Unified Process

• Unified Process: Iterative software lifecycle model
• Emphasis on early construction of a software architecture
• Emphasis on early demonstrations of the system

• Definitions
• 4 phases: Inception, Elaboration, Construction, Transition
• 7 workflows: Management, environment, requirements,

design, implementation, assessment, deployment.
• 5 artifact sets: Management set, requirements set, design

set, implementation set, deployment set

• Iteration: Repetition within a workflow.
• A unified process iteration should be treated as a

software project.

67© 2006 Bernd Bruegge Software Engineering WS 2006/2007

• Software life cycle models
• Sequential models

• Pure waterfall model and V-model
• Iterative model

• Boehm’s spiral model
• Unified process

• Entity-oriented models
• Issue-based model
• Sequential models can be modeled as special cases of

the issue-based model

• Prototyping
• A specific type of system model

• Illustrative, functional and exploratory prototypes
• Revolutionary and evolutionary prototyping
• Time-boxed prototyping is a better term than rapid

prototyping.

Summary

68© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Additional References

• Walker Royce
• Software Project Management, Addison-Wesley, 1998.

• Ivar Jacobsen, Grady Booch & James Rumbaugh
• The Unified Software Development Process, Addison

Wesley, 1999.

• Jim Arlow and Ila Neustadt
• UML and the Unified Process: Practical Object-Oriented

Analysis and Design, Addison Wesley, 2002.

• Philippe Kruchten
• Rational Unified Process, Addison-Wesley, 2000.

69© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Additional and Backup Slides

70© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Phase vs. Iteration

• A phase creates formal, stake-holder approved
versions of artifacts (“major milestones”)

• A phase to phase transition is triggered by a business
decisions

• An iteration creates informal, internally
controlled versions of artifacts (“minor
milestones”)

• Iteration to iteration transition is triggered by a specific
software development activity.

71© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Processes, Activities and Tasks
• Process Group: Consists of a set of processes
• Process: Consists of activities
• Activity: Consists of sub activities and tasks

Process
Group

Process

Activity

Development

Design

Task

Design
Database

Make a
Purchase

Recommendation

72© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sawtooth Model

System
Requirements
Analysis

Implementation

Preliminary
Design

Detailed
Design

Requirements
Analysis

Unit
Test

Prototype
Demonstration 2

Client

Developer

Client
Acceptance

System
Integration

& Test

Component
Integration

& Test

Prototype
Demonstration 1

Distinguishes between client and developers

73© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The Sharktooth Model

System
Requirements
Analysis

Implementation

Preliminary
Design

Detailed
Design

Requirements
Analysis

Unit
Test

Prototype
Demo 1

Prototype
Demo 2

Client

Manager

Developer

Design
Review

Client
Acceptance

System
Integration

& Test

Component
Integration

& Test

distinguishes between client, project manager and developers

74© 2006 Bernd Bruegge Software Engineering WS 2006/2007

“Process“ is overloaded in the Unified
Process

• Meta Process (Also called “Business process”)
• The policies, procedures and practices in an organization

pursuing a software-intensive line of business.
• Focus: Organizational improvement, long-term strategies,

and return on investment (ROI)

• Macro Process (“Lifecycle Model”)
• The set of processes in a software lifecycle and

dependencies among them
• Focus: Producing a software system within cost, schedule

and quality constraints

• Micro Process
• Techniques for achieving an artifact of the software process.
• Focus: Intermediate baselines with adequate quality and

functionality, as economically and rapidly as practical.

75© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Inception Phase: Activities

• Formulate the scope of the project
• Capture requirements
• Result: problem space and acceptance criteria are

defined

• Design the software architecture
• Evaluate design trade-offs, investigate solution space
• Result: Feasibility of at least one candidate

architecture is explored, initial set of build vs. buy
decisions

• Plan and prepare a business case
• Evaluate alternatives for risks and staffing problems.

76© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Elaboration Phase: Activities

• Elaborate the problem statement (“vision”)
• Work out the critical use cases that drive technical and

managerial decisions

• Elaborate the infrastructure
• Tailor the software process for the construction

stage, identify tools
• Establish intermediate milestones and evaluation

criteria for these milestones.
• Identify buy/build problems and decisions
• Identify lessons learned from the inception

phase
• Redesign the software architecture if necessary

77© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Construction Phase: Activities

• Resource management, control and process
optimization

• Complete development
• Test against evaluation criteria
• Assess releases against acceptance criteria.

78© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Transition Phase: Activities

• All the activities of deployment-specific
engineering

• Commercial packaging and production
• Sales rollout kit development
• Field personnel training

• Assess deployment baselines against the
acceptance criteria in the requirements set.

79© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Inception Phase: Evaluation Criteria

• Do all stakeholders concur on the scope
definition and cost and schedule estimates?

• Are the requirements understood?
• Are the critical use cases adequately modeled?

• Is the software architecture understood?
• Are cost, schedule estimates, priorities, risks

and development processes credible?
• Is there a prototype that helps in evaluating the

criteria?

80© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Elaboration Phase: Evaluation Criteria

• Apply the following questions to the results of
the inception phase:

• Is the problem statement stable?
• Is the architecture stable?
• Have major risk elements have been resolved?
• Is the construction plan realizable?
• Do all stakeholders agree that the problem solved if

the current plan is executed?
• Are the actual expenses versus planned expenses so

far acceptable?

81© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Construction Phase: Evaluation Criteria

• Apply the following questions to the results of
the construction phase:

• Is there a release mature enough to be deployed?
• Is the release stable enough to be deployed?
• Are the stakeholders ready to move to the transition

phase?
• Are actual expenses versus planned expenses so far

acceptable?

82© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Transition Phase: Evaluation Criteria

• Is the user satisfied?
• Are actual expenses versus planned expenses so

far acceptable?

83© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Rationale for Notations in Artifact Sets (cont’d)

• Implementation set:
• Notation: Programming language
• Goal: Capture the building blocks of the solution

domain in human-readable format.

• Deployment set:
• Form: Machine language
• Goal: Capture the solution in machine-readable format.

84© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Rationale for Notations in the Artifact Sets

• Management Set:
• Notation: Ad hoc text, graphics, textual use cases
• Goal: Capture plans, processes, objectives, acceptance

criteria.

• Requirements set:
• Notation: Structured text, models in UML
• Goal: Capture problem in language of problem domain

• Design set:
• Notation: Structured text, models in UML
• Goal: Capture the engineering blueprints

85© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Workflows in the Unified Process

• Management workflow
• Environment workflow
• Requirements workflow
• Design workflow
• Implementation workflow
• Assessment workflow
• Deployment workflow

86© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Managing Projects in the Unified Process

• How should we manage the construction of
software systems with the Unified Process?

• Treat the development of a software system with the
Unified Process as a set of several iterations

• Some of these can be scheduled in parallel, others
have to occur in sequence

• Define a single project for each iteration
• Establish work break down structures for each of the 7

workflows.

87© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Industry Distribution across Maturity Levels
(State of the Software Industry in 1995)

Maturity Level Frequency

1 Initial 70%
2 Repeatable 15%
3 Defined < 10%
4 Managed < 5%
5 Optimizing < 1%

Source:
 Royce, Project
Management,

P. 364

88© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Insert: Types of Prototypes

• Illustrative Prototype
• Develop the user interface with a set of storyboards
• Implement them on a napkin or with a user interface

builder (Visual Basic, Revolution...)
• Good for first dialog with client

• Functional Prototype
• Implement and deliver an operational system with

minimum functionality
• Then add more functionality
• No user interface

• Exploratory Prototype ("Hack")
• Implement part of the system to learn more about the

requirements
• Good for paradigm breaks.

89© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Types of Prototyping

• Revolutionary Prototyping
• Also called specification prototyping
• Get user experience with a throw-away version to get

the requirements right, then build the whole system
• Advantage: Can be developed in a short amount of

time
• Disadvantage: Users may have to accept that

features in the prototype are expensive to implement

• Evolutionary Prototyping
• The prototype is used as the basis for the

implementation of the final system
• Advantage: Short time to market
• Disadvantage: Can be used only if target system can

be constructed in prototyping language.

90© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Prototyping vs Rapid Development

• Revolutionary prototyping is sometimes called
rapid prototyping

• Rapid Prototyping is not a good term because it
confuses prototyping with rapid development

• Prototyping is a technical issue: It is a particular model
of development used in a life cycle process

• Rapid development is a management issue: It is a
particular way to control a project

• Prototyping can go on forever, if it is not
restricted:

• “Time-boxed prototyping” limits the duration of the
prototype development.

91© 2006 Bernd Bruegge Software Engineering WS 2006/2007

References

• Readings used for this lecture
• [Bruegge-Dutoit] Chapter 12
• [Humphrey 1989] Watts Humphrey, Managing the

Software Process, SEI Series in Software Engineering,
Addison Wesley, ISBN 0-201-18095-2

• Additional References
• [Royce 1970] Winston Royce, Managing the

Development of Large Software Systems, Proceedings of
the IEEE WESCON, August 1970, pp. 1-9

• SEI Maturity Questionaire, Appendix E.3 in [Royce 1998],
Walker Royce, Software Project Management,
Addison-Wesley, ISBN0-201-30958-0

92© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Movie of Escher’s Waterfall Model

Escher for Real
http://www.cs.technion.ac.il/~gershon/EscherForRealWaterfallFull.avi
(C) Copyright 2002-5 Gershon Elber,Computer Science Department,
Technion

93© 2006 Bernd Bruegge Software Engineering WS 2006/2007

OOSE-Book: Development activities and
their products

Requirements
elicitation

Analysis

System
design

problem
statement

functiona
l

modelnonfunctional
requirements

object
model

dynamic
model

class
diagram

use case
diagram

statechart
diagram

sequence
diagram

94© 2006 Bernd Bruegge Software Engineering WS 2006/2007

OOSE- Development activities (cont’d)
System
design

Object
design

Implemen-
tation

object
design
model

design
goals

subsystem
decomposition

source
code

Testing
deliverable

system

class
diagram

